Development of a Novel Kneepad for Mining

Jonisha P. Pollard, MS, CPE

National Institute for Occupational Safety and Health
Office of Mine Safety and Health Research
Human Factors Branch
Musculoskeletal Disorder Prevention Team
Miners have to kneel, squat, and crawl to perform their work.

Kneeling/squatting is associated with knee injuries.

In 2007, 84 knee injuries (averaging $13,121 per injury) were reported to MSHA for seam heights of 30” – 54”.

With the aging mining population, the impact of knee injuries will be great.
Knee Injury Control Methods

- Increase working height of underground coal mines
- Change equipment to reduce the need to kneel or crawl
- Implement postural rotation strategies to minimize one’s exposure to kneeling hazards
- Personal protective equipment
• Which postures are used by miners to perform their work?
 – Predominantly kneeling near full flexion
• Do different job types use different postures?
 – Roof bolter operators and mechanics also kneel upright frequently
 – Continuous miner operators and foreman also crawl frequently
Biomechanics of Kneeling and Squatting

- Capacitive sensor technology measures pressure at right knee
- Motion Analysis System measures body position
- Electromyography measures muscle activity of knee flexors and extensors
- Force plates measure ground-reaction forces applied to right foot and knee
Results

- **Analysis of the effect of posture on joint loading**
 - Kneeling on one knee creates high shear forces on the knee
 - Kneeling near full flexion and squatting result in high knee moments
 - Sitting on one’s heels when kneeling in full flexion can reduce the loading on the knee

- **Analysis of the effect of posture on knee pressures**
 - Kneepads examined are effective at reducing peak pressures
 - High pressures (> 25 psi) still exist on bony landmarks (patella and patellar tendon/tibial tubercle regions)
 - Kneeling near full flexion results in reduced peak pressures
 - Kneeling on one knee and upright kneeling results in highest peak pressures
Kneepad Development

A need exists to improve the design of kneepads currently utilized in the low-seam coal mining industry.

The kneepad must:

1. reduce the stresses at the knee while in postures associated with low-seam mining;
2. be durable enough to withstand the mining environment; and
3. be well-accepted by the mine workers.
Path to Novel Kneepad

1. Initial Design Concept – Based on Biomechanical Data
2. Focus Groups – Miner Expectations
3. Design Kneepad Prototype
4. Evaluate Kneepad Prototype
5. Usability and Preliminary Durability Testing
6. Efficacy Testing
7. Full-Scale Field Evaluation
Miner Expectations of Kneepads

3 types of focus groups conducted:

• **User problems** – identified functional problems and undesirable characteristics associated with kneepads currently being utilized by underground coal miners

• **User design ideas** – determined characteristics of kneepads that are considered desirable to underground coal miners

• **User acceptance** – identified level of acceptance and document problems and undesirable characteristics of 1st generation prototype
Kneepad Design Evolution

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
1st and 2nd Prototypes Evaluation

Height: 5'10.5"
Weight: 196 lbs.

Near 90°
- No Kneepad
- Blue
- 1st Prototype
- 2nd Prototype

Near Full
- 2nd Prototype with double padding

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Current State

- Prototype being redesigned with manufacturer
- Also researching other kneepad manufacturers
- Evaluating commercially available products for usage in mining
Commercially Available Kneepads

Kneeling upright with 5 different commercially available kneepads.
Usability and Durability Testing

- Does the kneepad shift during mining tasks?
- Does coal get trapped within the kneepad causing discomfort?
- Is the kneepad comfortable when worn for long periods of time?
- Are there any issues/problems cleaning the kneepad?
- Is the kneepad durable enough to withstand the mining environment for one month?
Kneepad Project Team

- Albert Cook – Technician
- Patrick Dempsey, PhD, CPE – Industrial Engineer, Ergonomist
- Sean Gallagher, PhD, CPE – Industrial Engineer, Ergonomist
- John Heberger, MS – Epidemiologist
- Carin Kosmoski, PhD – Behavioral Scientist
- Nicolle LaBranche, MBA, PE – Mining Engineer
- Timothy Matty – Technician
- Alan Mayton, PE – Mining Engineer
- Susan Moore, PhD – Bioengineer
- Mary Ellen Nelson – Technician
- Jonisha Pollard, MS, CPE – Bioengineer, Ergonomist
- William (Bill) Porter, MS – Industrial Engineer
Collaborators

• The Rooster Group
• University of Pittsburgh
• Rockwood Casualty Insurance Company
• The Art Institute of Pittsburgh
• Coal Mines: Parkwood Resources, Rox Coal, TJS Mining, East Fairfield Coal Company, Rosebud Mining, Amfire Mining, Murray Energy
Disclaimer

The findings and conclusions in this presentation are those of the authors and do not necessarily represent the views of NIOSH.

Mention of company names or products does not constitute endorsement by the Centers for Disease Control and Prevention.