THE
ROYAL SOCIETY
OF
WESTERN AUSTRALIA

PATRON
Her Majesty the Queen

VICE-PATRON
His Excellency Rear Admiral Sir Richard Trowbridge, K.C.V.O., K.St.J., Governor of Western Australia

President J. F. Loneragan, B.Sc., Ph.D., F.T.S.
Vice-Presidents A. E. Cockbain, B.Sc., Ph.D.
S. J. J. Davies, M.A., Ph.D.
Past President J. R. de Laeter, B.Ed. (Hons.), B.Sc. (Hons.), Ph.D., F.Inst.P., F.A.I.P.
Joint Hon. Secretaries E. D. Kabay, B.Ag.Sci. (Hons.)
J. T. Tippett, B.Sc., Ph.D.
Hon. Treasurer S. J. Curry, M.A.
Hon. Editor A. E. Cockbain, B.Sc., Ph.D.
D. T. Bell, B.A., Ph.D.
S. J. Hallam, M.A.
C. F. H. Jenkins, M.B.E., M.A., M.A.I.A.S.
L. E. Koch, M.Sc., Ph.D.
M. J. Mulcahy, B.Sc. (For.), Ph.D.
P. E. Playford, B.Sc. (Hons.), Ph.D., M.A.I.M.M.
P. R. Wycherley, O.B.E., B.Sc., Ph.D., F.L.S.
Hair structure of some Western Australian mammals

by A. Valente and P. A. Woolley

Zoology Department, La Trobe University, Bundoora, Vic. 3083

Manuscript received 19 February 1980; accepted 17 February 1981

Abstract

The technique of identification of hair in predator scats has been used in an attempt to locate areas in which the Dibbler, Antechinus apiculis, lives. A photographic reference system of the diagnostic features of the hair of 15 species of mammals indigenous to the south of Western Australia has been compiled. This has been used in conjunction with the photographs in Brunner and Conann (1974) of the hair structure of other species found in the 3 regions where the scats were collected. No Dibbler remains were found.

Introduction

The method of identification of mammalian hair developed by Brunner and Conann (1974) has been found useful in mammal surveys. Uncommon or inconspicuous species which are not often registered by conventional techniques may be detected by analysis of hair remains in predator scats (Brunner and Bertuch 1976, Friend 1978). It was considered that this technique might be useful in the search for the Dibbler, Antechinus apiculis, which is now considered to be extremely rare. The Dibbler has been found in recent times in only two localities, Cheyne Beach and Jerdacuttup, in the south of Western Australia. Morcombe (1967) trapped the first two specimens seen for 83 years at Cheyne Beach and his discovery, together with the finding of two Dibblers on farms near Jerdacuttup, led to further searches being made (Woolley 1977, 1980). Trapping has been carried out in a number of localities in the vicinity of Cheyne Beach and Jerdacuttup, and also in the Fitzgerald River National Park which lies within the present known range of the Dibbler. However, the only area in which Dibblers have been trapped is the one in which they were found by Morcombe and only 9 individuals have been captured (Woolley 1980). Because attempts to locate other populations of the Dibbler by conventional trapping methods have been unsuccessful predator scats have been collected from the three regions in the south of Western Australia in which trapping for the Dibbler has been carried out.

In order to identify the hair found in the predator scats it was necessary to prepare a reference set of photographs of the most diagnostic features of the hair of mammals which might be found in the regions in which the scats were collected. This paper reports on the structure of the hair of some mammals from the south of Western Australia; the mammalian prey items, identified by reference to the structure of hair and skeletal remains, found in the scats collected will be reported elsewhere.

Reference photographs of hair structure

The 3 localities (Cheyne Beach, Jerdacuttup and Fitzgerald River National Park) in which trapping for the Dibbler has been carried out are shown in Figure 1. A list of the indigenous and introduced mammals which might be found in the degree squares encompassing the trapping areas was compiled from the following sources: Ride (1970); records of the Western Australian Museum computer printout of mammalian species recorded by one degree squares dated 12 June 1978; information provided by Dr. A. N. Start, National Parks Board of Western Australia. The 38 mammals listed comprised the following 28 indigenous and 10 introduced species: Antechinus apiculis*, A. flavipes leucogaster*, Antechinus laniger*, Sminthopsis crassicaudata, S. grandii*, S. hirtipes*, S. hirtipes, Phascogale calura*, Dasyurus geoffroyi*, Myrmecobius fasciatus*, Isodon obesus, Tarsipes spenceriae*, Cercaetus concinuus, Trichosurus vulgatitus, Bettongia penicillata*, Macropus eugenii*, M. fuliginosus, M. irina*, Potorous flavopilosus*, P. tridactylus, Seutonix brachyurus*, Tachyglossus aculeatus, Hysterurus chrysogaster, Notounys michellii, Pseudomys alboglaucus, P. occidentalis*, P. shortridgei, Rattus fuscipes, R. rattus, Mus musculus, Oryzomys cuniculus, Felis catus, Canis familiaris, Vulpes vulpes, Sus scrofa, Ovis aries, Bos taurus and Equus caballus.

The structure of the hair of 13 of the indigenous species and of the 10 introduced species is illustrated in Brunner and Conann (1974). Samples of hair of the 15 indigenous species not illustrated (asterisked in the above list) were obtained from either museum specimens (Western Australian Museum, WAM; Macleay Museum New South Wales, MM) or live animals (Murdock University Colony MU) and a set of photographs of the structure of the hairs of each prepared (Figs 2-16). Hair profiles were drawn to scale. Whole mounts, across sections and cuticular scale casts were prepared as described in Brunner and Conann (1974) and photographed using a Zeiss photomicroscope. Prints were all made to one standard magnification (x308).

The hairs found in the scats were identified using a photographic reference system as described in Brunner and Conann (1974). To make identification easier the 38 species listed above were grouped according to various characteristics of the primary guard...
Hair profiles: O = over hair, G = guard hair.

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 30 μm.

C-G Whole mounts of hairs.
C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, primary guard hair near base;
F, smaller guard hair in shield region; G, smaller guard hair in mid-shaft region.

H-J Scale patterns of guard hairs.
H, shield; I, transition between shield and shaft region;
J, lower-shaft.

Figure 2. — Antechinomys laniger WAM M1546.
Hair profiles: O = over hair, G = guard hair, U = under hair.

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 40 μm.

C-G Whole mounts of hairs.
C, primary guard hair in mid-shield region; D, primary guard hair in proximal shield region; E, primary guard hair in mid-shaft region; F, primary guard hair near base; G, under hair in proximal 1/3.

II-K Scale patterns of guard hairs.
H, shield; I, transition between shield and shaft regions; J, shaft; K, near base.

Figure 3.—Smithopsis granulipes WAM M2333.
Hair profiles: \(G \) = guard hair, \(U \) = under hair.

\[\text{A, B} \quad \text{Cross sections of hairs.} \]

Maximum diameter of primary guard hairs 40 \(\mu \)m.

\[\text{C-G} \quad \text{Whole mounts of hairs.} \]

C, primary guard hair in shield region; D, primary guard hair showing transition between shield and shaft; E, primary guard hair in shaft region; F, smaller guard hair in shield region; G, under hair in proximal 1/2.

\[\text{H-J} \quad \text{Scale patterns of guard hairs.} \]

H, shield; I, transition between shield and shaft regions; J, shaft.

Figure 4. – *Sminthopsis hirtipes* WAM M1577.
Hair profiles: - O = over hair, G = guard hair, U = under hair.

A, B Cross sections of hairs.
C-G Whole mounts of hairs.
C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, F, smaller guard hairs in shield region; G, under hair in proximal 1/2.
H-K Scale patterns of guard hairs.
H, shield; I, transition between shield and shaft regions; J, shaft; K, near base.

Figure 5.—Tarsipes spencerae WAM M15460.
Hair profiles: O = over hair, G = guard hair, U = under hair.

0 mm 5

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 45 \mu m.

C-G Whole mounts of hairs.
C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, F, smaller guard hairs in shield region; G, under hair in proximal 1/2.

H-L Scale patterns of guard hairs.
H, I, shield; J, transition between shield and shaft regions; K, mid-shaft; L, near base.

Figure 6.—*Antechinus flavipes leucogaster* WAM M5559.
Hair profiles: - O = over hair, G = guard hair, U = under hair.

A, B Cross sections of hairs.
C-H Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, F, smaller guard hairs in shield region; G, smaller guard hair in mid-shaft region; H, under hair in proximal 1/2.
I-L Scale patterns of guard hairs.
 I, mid-shield; J, lower shield; K, transition between shield and shaft regions; L, shaft.

Figure 7.—Anechmus apiculis WAM M15471-2.
Hair profiles: \(G \) = guard hair, \(U \) = under hair.

A, B \hspace{1cm} \text{Cross sections of hairs.}

Maximum diameter of primary guard hairs 50 \(\mu m \).

C-G \hspace{1cm} \text{Whole mounts of hairs.}

C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, smaller guard hair in shield region; F, smaller guard hair in mid-shaft region; G, under hair in proximal 1/3.

H-K \hspace{1cm} \text{Scale patterns of guard hairs.}

H, shield; I, transition between shield and shaft regions; J, mid-shaft; K, near base.

Figure 8.—*Phascogale calura* WAM M5311.
Hair profiles: - O = over hair, G = guard hair, U = under hair

A, B Cross sections of hairs.
 Maximum diameter of primary guard hairs 80 μm.

C-H Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, smaller guard hair near base; H, under hair in proximal 1/3.

I-L Scale patterns of guard hairs.
 I, J, distal 1/3; K, transition between distal and proximal regions; L, proximal 1/3.

Figure 9.—*Dasyurus geoffroii* WAM M1106
Hair profile: G = guard hair, U = under hair.

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 165 μm.

C-F Whole mounts of hairs.
C, primary guard hair in widest region; D, primary guard hair in proximal 1/3; E, primary guard hair near base; F, under hair in proximal 1/2.

G-I Scale patterns of guard hairs.
G, distal 1/3; II, proximal 1/3; I, near base.

Figure 10.—Myrmecobius fasciatus WAM M918.
Hair profiles:- O = over hair, G = guard hair, U = under hair.

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 40 μm.
C-G Whole mounts of hairs.
C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, smaller guard hair in shield region; F, smaller guard hair in mid-shaft region, G, under hair in proximal 1/2.

II-K Scale patterns of guard hairs.
H, shield; I, transition between shield and shaft regions; J, mid-shaft; K, near base.

Figure 11.—Pseudomys occidentalis WAM M10093.
Hair profiles: - G = guard hair, U = under hair.

A, B Cross sections of hairs.

C-G Whole mounts of hairs.

H-K Scale patterns of guard hairs.

Figure 12.—Betonia penicillata WAM 1366.
Hair profiles: - G = guard hair, U = under hair.

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 95 μm.

C-G Whole mounts of hairs.
C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, under hair in proximal 1/2.

H-J Scale patterns of guard hairs.
H, distal 1/3; I, mid-shaft; J, proximal 1/3.

Figure 13.—Macropus eugenii MU.
Hair profiles: - G = guard hair, U = under hair.

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 105 \(\mu \text{m} \).
C-G Whole mounts of hairs.
C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, under hair in proximal 1/2.
H-J Scale patterns of guard hairs.
H, distal 1/3; I, mid-shaft; J, near base.

Figure 14. - *Macropus irma* MU.
Hair profiles: G = guard hair, U = under hair.

A, B Cross sections of hairs.
G, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, primary guard hair near base; F, under hair in distal 1/3.

G-I Scale patterns of guard hairs.
G, distal 1/3; II, mid-shaft; I, proximal 1/3.

Figure 15.—Potorous platyops MM ♂.
Hair profiles: - G = guard hair, U = under hair

A, B Cross sections of hairs.
Maximum diameter of primary guard hairs 145 μm.
C-F Whole mounts of hairs.
C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in mid-shaft region; F, under hair in proximal 1/2.
G-J Scale patterns of guard hairs.
G, H, distal 1/3; I, mid-shaft; J, near base.

Figure 16.—Setonix brachyurus MU.
hairs (Table 1). In addition to the photographs hair samples from most of the species were available so that direct comparisons could be made if necessary.

Discussion

The species to which a sample of unknown hair belongs can be identified by comparison with the photographs of the structure of hairs in a reference collection. Some species are very easily identified because the hairs have very obvious distinguishing characters while others lack such obvious characters and may show only small differences from related forms.

Among the species illustrated examples with obvious distinguishing characters include *Antechinus apicalis*, *Myrinecobius fasciatus*, *Tarsipes spenceriae*, *Setonix brachyurus* and *Antechinomys laniger*. *A. apicalis* displays a globular arrangement of the medulla which is very distinctive in cross section. The hairs of both *M. fasciatus* and *T. spenceriae* can be easily recognised by the appearance of the medulla in whole mounts and cross sections. *S. brachyurus* has thick, long hair which displays a very distinctive scale pattern along the proximal half of the hair. Many of the guard hairs of *A. laniger* show an uncommon profile, with constrictions at several points along the length of the hair.

Some of the marsupials illustrated are difficult to distinguish from closely related forms illustrated in Brunner and Coman (1974). These include: *Antechinus flavigaster*, the western form of *A. flavipes*; *Sminthopsis hirtipes*, which appears to differ from *S. crassicaudata* only in the width of the primary guard hairs and *Potorous platyops* and *P. tridactylus*, in which there are only subtle differences in the appearance of the medulla, best appreciated by examining hairs rather than photographs. Among the murids, hair from *Pseudomys occidentalis* differs little from other species of *Pseudomys* illustrated in Brunner and Coman (1974), *P. shortridgei* being the exception.

The grouping of species in Table 1 shows some discrepancies with the grouping in Brunner and Coman (1974). We have placed *Sminthopsis crassicaudata* in Group 2 (hairs predominantly oval in cross section) and not in Group 1 (hairs predominantly circular in cross section) on the basis of the illustration in Brunner and Coman which shows mainly oval hairs, and on the examination of reference hairs. *Macropus fuliginosus* and *Potorous tridactylus* have been placed in Group 4 (hairs predominantly oblong in cross section) whereas *D. murina* and Coman place them in Group 2 (hairs predominantly oval in cross section). The difficulty in this case appears to lie in the rather subjective interpretation of the difference between oval and oblong sections.

The primary aim in preparing this reference collection of photographs was to provide a method for identifying the hair of the Dibbler, *Antechinus melanarius*. The distinctive character of the hairs of this species makes it unlikely that any samples of it would be misidentified, and none was found in any of the predator scats examined.

Acknowledgements—We wish to thank Mr. H. Brunner (Keith Turnbull Research Institute) for the techniques involved in the identification of hair and Dr. J. Kitchener (Western Australian Museum), Dr. P. Stanbury (Melandy Museum) and Dr. M. B. Rentree (Murdoch University) for hair samples.

References

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Hairs predominantly circular in cross section.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Hairs predominantly circular in cross section.</td>
</tr>
<tr>
<td>Sub-group (a)</td>
<td>Maximum diameter of guard hairs 45um, with a distinct constriction before shield.</td>
</tr>
<tr>
<td>Sub-group (b)</td>
<td>Maximum diameter of guard hairs greater than 45um, with a distinct constriction before shield.</td>
</tr>
<tr>
<td>Sub-group (c)</td>
<td>Maximum diameter of guard hairs greater than 45um, with a distinct constriction before shield.</td>
</tr>
<tr>
<td>Group 2</td>
<td>Hairs predominantly oval in cross section.</td>
</tr>
<tr>
<td>Sub-group (a)</td>
<td>Maximum diameter of guard hairs 45um, with a distinct constriction before shield.</td>
</tr>
<tr>
<td>Sub-group (b)</td>
<td>Maximum diameter of guard hairs greater than 45um, with a distinct constriction before shield.</td>
</tr>
<tr>
<td>Sub-group (c)</td>
<td>Maximum diameter of guard hairs greater than 45um, with a distinct constriction before shield.</td>
</tr>
</tbody>
</table>

Species illustrated in Figures 2-16, remainder illustrated in Brunner and Coman (1974).

INSTRUCTIONS TO AUTHORS

Contributions to this Journal should be sent to The Honorary Editor, Royal Society of Western Australia, Western Australian Museum, Francis Street, Perth, Western Australia 6000. Publication in the Society’s Journal is available to all categories of members and to non-members residing outside Western Australia. Where all authors of a paper live in Western Australia at least one author must be a member of the Society. Papers by non-members living outside the State must be communicated through an Ordinary or an Honorary Member. Council decides whether any contribution will be accepted for publication. All papers accepted must be read either in full or in abstract or be tabled at an ordinary meeting before publication.

Papers should be accompanied by a table of contents, on a separate sheet, showing clearly the status of all headings; this will not necessarily be published. Authors should maintain a proper balance between length and substance, and papers longer than 10,000 words would need to be of exceptional importance to be considered for publication. The Abstract (which will probably be read more than any other part of the paper) should not be an expanded title, but should include the main substance of the paper in a condensed form.

Typescripts should be double-spaced on opaque white paper; the original and one copy should be sent. Tables and captions for Figures should be on separate sheets. All pages should be serially numbered. Authors are advised to use recent issues of the Journal as a guide to the general format of their papers, including the preparation of references; journal titles in references may be given in full or may follow any widely used conventional system of abbreviation.

Note that all illustrations are Figures, which are numbered in a single sequence. In composite Figures, made up of several photographs or diagrams, each of these should be designated by letter (e.g. Figure 13B). Illustrations should include all necessary lettering, and must be suitable for direct photographic reproduction. No lettering should be smaller than 1 mm on reduction. To avoid unnecessary handling of the original illustrations, which are usually best prepared between 1½ and 2 times the required size, authors are advised to supply extra prints already reduced. Additional printing costs, such as those for folding maps or colour blocks, will normally be charged to authors.

The metric system (S.I. units) must be used in the paper. Taxonomic papers must follow the appropriate International Code of Nomenclature, and geological papers must adhere to the International Stratigraphic Guide. Spelling should follow the Concise Oxford Dictionary.

Extensive sets of data, such as large tables or long appendices, may be classed as Supplementary Publications and not printed with the paper. Supplementary Publications will be lodged with the Society’s Library (c/- Western Australian Museum, Perth, W.A. 6000) and with the National Library of Australia (Manuscript Section, Parkes Place, Barton, A.C.T. 2600) and photocopies may be obtained from either institution upon payment of a fee.

Fifty reprints of each paper are supplied free of charge. Further reprints may be ordered at cost, provided that orders are submitted with the returned galley proofs.

Authors are solely responsible for the accuracy of all information in their papers, and for any opinion they express.
Contents

Hair structure of some Western Australian mammals. By A. Valente and P. A. Woolley (communicated by B. K. Bowen) .. 101

Editor: A. E. Cockbain

Journal Manager: J. Backhouse

No claim for non-receipt of the Journal will be entertained unless it is received within 12 months after publication of part 4 of each volume.

The Royal Society of Western Australia, Western Australian Museum, Perth